Because of a lapse in government funding, the information on this
website may not be up to date, transactions submitted via the website
may not be processed, and the agency may not be able to respond to
inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more
details about its operating status, please visit
cc.nih.gov.
Updates regarding government operating status and resumption of normal
operations can be found at opm.gov.
Pink Phoenix, alter ego of Dr. Sandra San Miguel, preparing to pass out Vaccine SuperPower Packs described later in this post. Credit: Courtesy of Dr. Sandra San Miguel.
Members of the league work with elementary students across the country to give them a sense of belonging to the veterinary profession. “I’m most proud of bringing people together who share the mission and vision with all their heart,” Pink Phoenix remarks. “Nobody can just be a member of the league. You have to earn the cape.” The league has over 400 certified role models throughout the country who are either veterinarians—VetaHumanz—or veterinary school students—VetaHumanz in training.
“I study the dance between a bacterium and its host. If we can decode the secrets of that dance—how the pathogen causes disease, and how the host fights back—we might be able to take advantage of vulnerabilities to improve our ability to combat infections,” says Víctor J. Torres, Ph.D., the C. V. Starr Professor of Microbiology at the New York University (NYU) Grossman School of Medicine in New York City.
Discovering and Pursuing a Passion for Science
Growing up, Dr. Torres never would have imagined his highly successful scientific career, especially since he didn’t have a strong interest in science. He entered the University of Puerto Rico, Mayagüez, in 1995, planning to participate in the Reserve Officers’ Training Corps and join the Air Force after graduation. He struggled during his first year of college and had to repeat several courses. In one of those courses, he met a fellow student who was planning to pursue a career in science—his now wife, Carmen A. Perez, M.D., Ph.D., who’s a radiation oncologist at NYU Langone. She shared with Dr. Torres some of the opportunities in science available to him, including the NIGMS-funded Maximizing Access to Research Careers (MARC) program at their university.
“I find it fulfilling to be a scientist because I know that even if at some points it seems like I’m working on an incremental experiment, eventually it’s going to help solve a bigger problem,” says Caroline Jones, Ph.D., an assistant professor of bioengineering at the University of Texas at Dallas. Check out the highlights of our interview with Dr. Jones to learn about her career path, her passion for sharing science with the public, and her research on sepsis—an overwhelming or impaired whole-body immune response to an insult, such as an infection or injury that’s responsible for the deaths of nearly 270,000 Americans every year.
Q: How did you first become interested in science?
A: My mother was a high school math teacher, so I had that role model growing up. I also had a math and engineering teacher in high school who encouraged me and sparked my interest in the quantitative side of science. I decided to study biomedical engineering in college because I wanted to apply quantitative tools in a way that helped people.
“My parents told me that I already wanted to be a scientist when I was 7 or 8 years old. I don’t remember ever considering anything else,” says Ry Young, Ph.D., a professor of biochemistry, biophysics, and biology at Texas A&M University, College Station.
Dr. Young has been a researcher for more than 45 years and is a leading expert on bacteriophages—viruses that infect bacteria. He and other scientists have shown that phages, as bacteriophages are often called, could help us fight bacteria that have developed resistance to antibiotics. Antibiotic-resistant infections cause more than 35,000 deaths per year in the U.S., and new, effective treatments for them are urgently needed.
“One thing that we try to develop in students is a sense of belonging and scientific identity,” says Edwin Barea-Rodriguez, Ph.D., the director of the Research Training Initiative for Student Enhancement (RISE) program at the University of Texas, San Antonio (UTSA). The program provides undergraduate and graduate students from underrepresented backgrounds with research experiences, professional development opportunities, and faculty mentorships. The UTSA RISE program has helped hundreds of students build strong foundations for scientific careers over its more than 20-year history. Here, we share the stories of three students who have benefited from RISE.
Support Beyond the Lab
Kaira Church. Credit: Courtesy of Kaira Church.
After earning her bachelor’s degree in biochemistry, Kaira Church knew she loved research but wasn’t sure if graduate school was right for her. She took a job as a lab technician in the research group of Astrid Cardona, Ph.D., a professor of molecular microbiology and immunology at UTSA, where she learned firsthand what being a graduate student entailed. She was also introduced to RISE and was impressed by the variety of opportunities it offered. She decided to pursue a Ph.D. and applied to the program.
Kaira is now in her fourth year as a RISE trainee. “I really like the professional development and the networking that RISE offers,” she says. “A lot of science majors are stuck in the lab all the time. RISE ensures that we’re meeting people in our field so we have plenty of job opportunities when we graduate.”
Jenny Durrin says she would never have become the director of the Seed Potato Germplasm Program at the University of Idaho, Moscow, without the experience she gained through the Idaho IDeA Networks of Biomedical Research Excellence (INBRE) program. Another Idaho INBRE alum, Steve Van Horn, credits the program with enabling him to start a career in the pharmaceutical industry.
Providing undergraduate students with research opportunities and preparing them for STEM careers in biomedical sciences are key goals of INBREs across the country, including Idaho’s program. Here, we share Jenny’s and Steve’s stories and the pivotal role that INBRE played for them.
“If you want to pursue a career in science, it’s very important to foster a hardworking attitude, a creative mind, and critical thinking,” says Jingru Sun, Ph.D., an associate professor of translational medicine and physiology at Washington State University’s Elson S. Floyd College of Medicine in Spokane. Our interview with Dr. Sun highlights how her career path led her to research the way the nervous system regulates immune responses.
Q: How did you become interested in science?
A: In high school, I had an amazing teacher who introduced me to the scientific world, guided me to ask the right questions, and encouraged me to find answers by myself. I asked questions like: How do trees produce oxygen? How can we see bacteria through a microscope? Why are humans smarter than other animals?
Dr. Melike Lakadamyali with a microscope. Credit: Courtesy of Dr. Lakadamyali.
“It would be a dream come true if I could look at a cell within a tissue and have a Google Maps view to zoom in until I saw individual molecules,” says Melike Lakadamyali, Ph.D., an associate professor of physiology at the University of Pennsylvania’s Perelman School of Medicine in Philadelphia. Her lab is helping make part of that dream a reality by developing super-resolution microscopy tools that visualize cells at a near-molecular level.
Blending Physics and Biology
Science and math fascinated Dr. Lakadamyali since childhood, and she felt especially drawn to physics because she enjoyed using logic to solve problems. After graduating high school in her native country of Cyprus, she chose to study physics at the University of Texas, Austin. She never gave much thought to applying physics methods to biological questions—a field known as biophysics—until her third year as an undergraduate, when she gained her first research experience in the lab of Josef Käs, Ph.D.