NIGMS Funding Opportunities
NIGMS Funding Policies
Follow us on LinkedIn
NIGMS encourages all potential applicants to talk to a program officer before preparing and submitting an application. Find contact information for the program officer overseeing grants in your scientific area of interest, desired training program, or capacity building initiative below.
Development of computational and informatics tools and methods for data privacy, harmonization, integration and analysis using electronic health records and other biomedical data aimed at elucidating biological function, ontology development, or developing models of biological and biochemical processes. Areas of interest include population pharmacokinetics, pharmacovigilance, drug discovery and drug repurposing.
Han Nguyen, Ph.D. Email: han.nguyen@nih.govBiographical Sketch
Development of algorithms and computational tools for collecting, managing, analyzing, visualizing, and interpreting complex biomedical data; or using data science methods and tools to extract and discover new knowledge about biological systems. The scope of studies includes the development of computational algorithms to analyze data from nucleic acid sequencing, proteomics, metabolomics, and multi-omics, and development of methods for large scale data management including data curation, standardization, and ontology.
Peggy Wang, Ph.D. Email: peggy.wang@nih.govBiographical Sketch
Guoqin Yu, Ph.D. Email: guoqin.yu@nih.govBiographical Sketch
Development of advanced statistical techniques and methodologies for study design, data analysis and interpretation. The scope of studies ranges from those focused-on sequencing, -omics, bioimaging, high-through-put technologies in molecular and cellular biology data, pharmacology, and populational studies.
Algorithm design and software development for bioinformatics research. The scope of studies includes software and tools development to facilitate biological data analysis, interpretation, and visualization to address research questions in basic biology. Areas of interest include software to analyze cellular processes and interactions and software engineering for ontology and data structure.
Development of new computational algorithms and mathematical methods for integrative understanding of biological systems that may span temporal and spatial domains. The system scale ranges from subcellular to cellular to tissue, organ, organoids/3D cultures, and organismic systems. Topics include cellular regulatory processes such as gene expression and metabolism, cellular architecture and intracellular dynamics, cell communication and motility, cell division and differentiation, tissue formation, organogenesis, and tissue and organ functions.
Development of computational modeling for understanding population dynamics related to the interaction of organisms with their physical environment and between species. In this context, infectious disease models are used to understand the spread of parasites, viruses, and infectious diseases.
Development of new or improved instruments, methods, and related software to elucidate 3D structures of macromolecules and macromolecular complexes. Relevant technologies cover areas of sample handling; X-ray diffraction and other X-ray techniques; magnetic resonance techniques such as NMR, EPR, and ESR; microscopic techniques that resolve at the molecular level such as single particle cryo-electron microscopy, micro electron diffraction (micro-ED) and tomography (cryo-ET); computational tools for data collection, processing, interpretation, curation, and mining.
Ashley Barnes, Ph.D. Email: ashley.barnes@nih.govBiographical Sketch
Sangita Sinha, Ph.D. Email: sangita.sinha@nih.govBiographical Sketch
Paula Flicker, Ph.D. Email: paula.flicker@nih.govBiographical Sketch
Development of new or improved techniques, instruments, tools, or methods for quantitative analyses of biomolecules such as proteins, carbohydrates, lipids, nucleic acids, metabolites, and complexes. Technologies and methods development areas include mass spectrometry; magnetic resonance technologies; surface plasmon resonance; optical and vibrational spectroscopy; sample handling and separations; labeling methods; microfluidics, flow-based systems; high-throughput techniques; biosensors and electrochemical tools; and associated computational tools for data mining, analysis, interpretations, -omics, and simulation of molecular dynamics.
Carolina Salvador Morales, Ph.D. Email: carolina.salvadormorales@nih.govBiographical Sketch
Sangita Sinha, Ph.D., PE Email: sangita.sinha@nih.govBiographical Sketch
Ashley Barnes, Ph.D., PE Email: ashley.barnes@nih.govBiographical Sketch
Development of new or improved laboratory/experimental techniques, instruments, or supporting software that measure the location and dynamics of molecules in situ, and organelles, cells, or tissues on the nanometer and micrometer length scales. These include instrument design; development of integrative multiscale or multimodal approaches for measuring cell structure and function; new illumination/excitation sources and detectors of heat, sound, light, electrons, and X-rays; imaging modes of spectroscopy; development of particles, physiochemical or mechanical probes; computational approaches to image formation including super-resolution microscopy and tomography; image analysis and processing algorithms of image sets for data interpretation, curation, mining, and visualization; development of sample preparations and modifications for imaging; probes, molecular reporters and fluorescent indicators for structural or functional imaging or microscopy/nanoscopy.
Alvin Yeh, Ph.D. Email: alvin.yeh@nih.govBiographical Sketch
Development of new or improved tools and methods that directly manipulate or investigate the properties of cells and their environment. These include the development of methods for the design and delivery of molecules and nanoparticles into cells or transport between cellular compartments, such as electroporation, co-transporters, or partitioning; tools for cell engineering or direct measurement of cell function; development of biological, chemical, or physical assays for measuring the function of macromolecular complexes within the cellular milieu, the behavior of organelles, or for characterizing cell phenotype.
Ashley Barnes, Ph.D. Email: ashley.barnes@nih.govBiographical Sketch
Includes theoretical, computational, and physics-based studies of the fundamental behaviors of atoms to molecules and their interactions, including predominantly theoretical and computational studies in the following areas: quantum mechanical and molecular dynamics simulations; thermodynamics and statistical mechanics; basic principles of molecular recognition; development and validation of force fields and scoring functions; and algorithms for prediction of molecular properties; macromolecule-ligand binding predictions by docking and other in silico screening methods applicable to drug design; predictions of protein and other macromolecular structures; and studies in macromolecular design, protein folding, RNA folding, macromolecular dynamics, molecular interactions, membrane and membrane protein simulations, phase separation, aggregation, and complex formation.
Anne Gershenson, Ph.D. Email: anne.gershenson@nih.govBiographical Sketch
Biophysical studies of all aspects of protein structure and function in which the goal is to elucidate general principles, including establishing the physical and thermodynamic basis for native structure; protein-protein interactions; protein-ligand recognition; folding mechanisms and kinetics; and protein de novo design and engineering. Experimental studies of intrinsically disordered proteins; folding upon binding, protein aggregation, and phase separations. Included are studies of structural dynamics in protein function and allosteric control. Experimental methods may include confirmatory in vivo studies and/or established computational methods.
Thomas Cho, Ph.D. Email: thomas.cho@nih.govBiographical Sketch
Research involving the application of physical principles to the study of nucleic acids and protein-nucleic acid complexes. Areas of research include physical and chemical studies on the structure of nucleic acids and protein-nucleic acid complexes; analysis of protein–nucleic-acid interactions and assembly mechanisms; ligand-nucleic acid interactions; development of physical, chemical, and theoretical/computational techniques for the analysis of nucleic acids and their complexes.
Michael Sakalian, Ph.D. Email: sakalianm@nigms.nih.govBiographical Sketch
General principles of membrane structure and function, including the behavior of lipids, bilayers, and other lipid phases; membrane protein structure and function, including folding, assembly, dynamics, and general mechanisms of action, conformational changes, and energy coupling; membrane protein-lipid interactions, effects of lipid compositions and phase separated domains; physical studies of fusion, fission, and deformation processes; as studied through the application of primarily biophysical methods and approaches.
Veronica Taylor, Ph.D. Email: veronica.taylor@nih.govBiographical Sketch
Research on the mechanisms of assembly, structure, and function of cellular ultra-structures larger than a few million Daltons and dependent on high levels of molecular organization. These include large cellular machines such as the ribosome, spliceosome, cytoskeletal structures, interactions between intracellular and extracellular matrix components, signaling networks that depend on large-scale interactions when studied primarily by multiple methods and/or by methods that are not routine, such as single particle cryo-electron microscopy, cryo-electron tomography, scanning probe microscopy, and other force transduction methods.
Paula Flicker, Ph.D. Email: flickerp@nigms.nih.govBiographical Sketch
Research involving the application of physical principles to the study of viral attachment, fusion/penetration, uncoating, assembly, and budding/release. Areas of research include analysis of virus-host interactions; phage and viral packaging; the structure and mechanism of assemblies from viral and host components; and determining factors and energetics that regulate protein-nucleic acid interactions necessary for virion entry, packaging, maturation, and release.
This portfolio comprises SBIR/STTR projects of general interest to the Division of Biophysics, Biomedical Technology, and Computational Biosciences. These projects are notable for their general pertinence to basic science issues and broad applicability of the proposed developments.
For information about NIGMS SBIR programs, email Eddie Billingslea, Ph.D.
BBCB manages Resource and Center programs that provide technologies to the Biomedical Research Community.
Regulation of cell death pathways, autophagy, and maintenance of cellular homeostasis. Areas of interest include macro and selective autophagy, apoptosis, necroptosis, and metabolic and protein homeostasis.
Baishali Maskeri, Ph.D. Email: maskerib@mail.nih.govBiographical Sketch
Processes that control migratory cell behaviors. Examples include bacterial chemotaxis and adhesion-based mechanotransduction signaling mechanisms.
Alexandra Ainsztein, Ph.D. Email: ainsztea@nigms.nih.govBiographical Sketch
Kevin Czaplinski, Ph.D. Email: kevin.czaplinski@nih.govBiographical Sketch
Establishment of cellular polarity and cell shape. The study of biomechanical forces and processes. Examples include epithelial topogenesis, yeast bud site selection, cell protrusions, positioning of organelles, mechanotransduction, and cell shape changes.
Marc Rigas, Ph.D. Email: marc.rigas@nih.govBiographical Sketch
The cellular physiology of chaperones, proteosomes, and protein quality control pathways. Cellular responses and management of misfolded proteins, such as the unfolded protein response and other stress responses.
Andre Phillips, Ph.D. Email: andre.phillips@nih.govBiographical Sketch
Cellular decision processes and intracellular signaling pathway dynamics, growth initiation, proliferation, cell senescence, terminal differentiation, sporulation, and chemotaxis regulation.
Jianhua Xu, Ph.D. Email: jianhua.xu@nih.govBiographical Sketch
Processes that regulate endocytosis and the endo-lysosomal network. Studies of the function and biogenesis of endosomes, lysosomes, and lysosome-related organelles, and how membranes and proteins are recycled.
Kalynda Gonzales Stokes, Ph.D. Email: kalynda.stokes@nih.govBiographical Sketch
Investigations into the assembly of mitotic and meiotic spindle apparatus components. Areas of interest include kinetochore functions, spindle assembly checkpoints, centrosomes, and chromosome attachment and movement.
Rita Miller, Ph.D. Email: rita.miller@nih.govBiographical Sketch
General studies of membrane biology. Examples include membrane biogenesis, protein targeting and anchoring, and nuclear import and export. Research on fat-related organelles (e.g. lipid droplets, peroxisomes) and studies of lipid homeostasis.
Linda MacArthur, Ph.D. Email: linda.macarthur@nih.govBiographical Sketch
Rita Miller, Ph.D. Email: rita.miller@nih.govBiographical Sketch
Focus is on the cytoskeleton and cytoskeleton-associated proteins. Areas of interest include the transport of cargoes by motor proteins, and specialized cytoskeletal-based structures like cilia, eukaryotic flagella, and basal bodies.
The processing and intracellular trafficking of proteins for export and the biogenesis of the Golgi and endoplasmic reticulum.
Yogesh Wairkar, Ph.D. Email: yogesh.wairkar@nih.govBiographical Sketch
Structure, function, and regulation of chromosomes. Examples include higher order chromosome architecture, telomeres, centromeres, and large-scale programmed genome rearrangements.
Dimitrios Vatakis, Ph.D. Email: dimitrios.vatakis@nih.govBiographical Sketch
Mechanisms of gene activation and repression. Examples include roles of chromatin and large protein-DNA complexes; interactions of DNA with nonhistone proteins; epigenetic factors influencing gene expression such as histone modifications, chromatin remodeling, DNA methylation, position effects, imprinting, X-inactivation, and gene silencing.
Chi-Wing Chow, Ph.D. Email: chi-wing.chow@nih.govBiographical Sketch
Genetic, molecular, and/or genomic characterization of circadian rhythms and regulatory processes associated with circadian clock elements, sleep, and related behavioral and physiological phenomena, with an emphasis in non-human systems including invertebrates, plants, fungi, and bacteria.
Lameese Akacem, Ph.D. Email: lameese.akacem@nih.govBiographical Sketch
Regulation of early events in normal development prior to organ formation. Emphasis is on non-mammalian systems. Examples of developmental processes include cell and tissue polarization, collective cell migration, pattern formation, and morphogenetic changes during gastrulation and body axis extension. NIGMS’s support of neurodevelopment ends at the initial morphogenesis of the neural tube; it does not include subsequent brain and spinal cord regionalization, nor neuronal subtype specification/diversification.
Melissa Wells, Ph.D. Email: melissa.wells@nih.govBiographical Sketch
Focus here is on understanding signaling pathways underlying fundamental processes that drive early (pre-organogenesis) normal development, primarily using non-mammalian systems. Research should be predominantly focused on the signaling cascades involved in developmental patterning and morphogenetic events rather than on gene regulatory networks or biophysical/biomechanical and cell-level mechanisms. Topics include but are not limited to growth factor/morphogen signaling networks, planar cell polarity signaling, cytoneme/airineme-based signaling and signaling during collective cell migration.
Desirée Salazar, Ph.D. Email: desiree.salazar@nih.govBiographical Sketch
Genetic, genomic and/or molecular characterization of simple and complex behaviors in non-human research organisms. The research may directly address genetic mechanisms, or use genetic tools to understand molecular mechanisms underlying behavior. The focus is on neural function, not neural development.
Laurie Stepanek, Ph.D. Email: laurie.stepanek@nih.govBiographical Sketch
The genetic, physiological, and ecological mechanisms governing relationships between microbes. How the microbiota responds at the community, population, organismal, or molecular level to maintain homeostasis or responds to dysbiosis of the host. The focus of the research should be on the microbiota and not the host or organ system. Research to facilitate an understanding of the biology of pathogenic microorganisms, pathogenesis, and pathogen-host interactions may be more appropriate for other NIH Institutes or Centers (ICs).
Andrea Keane-Myers, Ph.D. Email: andrea.keane-myers@nih.govBiographical Sketch
Investigations into pathways that underlie adaptive responses to fluctuating environmental conditions. This includes phenotypic plasticity. How research organisms respond to nutrient availability, parasitism, temperature, oxygen levels, pH, light, gravity, antibiotics, toxins, or metal ions.
Sydella Blatch Alexander, Ph.D. Email: sydella.blatch@nih.govBiographical Sketch
Genetics of natural and laboratory populations. Evolutionary topics include genetic variation in complex traits in humans and research organisms, chromosome evolution, phenotypic evolution and speciation, evolution of development, host-pathogen evolution and other co-adapting systems. Also, statistical methods and mathematical models for evolutionary and population genetic analysis. NIGMS does not support research on evolutionary development of organs or organ systems, nor studies of ecology outside of the Ecology and Evolution of Infectious Disease Program that is jointly offered with the National Science Foundation.
Ronald Adkins, Ph.D. Email: ronald.adkins@nih.govBiographical Sketch
The basic biology, biochemistry, genetics, epigenetics, and cellular organization of stem cells. Included are embryonic, germline, induced pluripotent, and tissue-specific stem cells from humans and research organisms. Emphasis is on pluripotency maintenance and self-renewal, properties that distinguish stem cells from differentiated cells, nuclear reprogramming of somatic cells, and regulation of asymmetric cell division of stem and progenitor cells.
Regeneration topics include genetic, molecular, and/or genomic regulation of tissue and organ regeneration in non-human systems, including plants, with a particular interest in non-mammalian research organisms.
Mechanisms of genome instability, including large scale chromosomal changes, gross chromosomal rearrangements, and aneuploidy; effects of non-telomeric chromatin on chromosomal and genomic stability; mutational mechanisms, including base insertions, expansion via slippage/repetitive sequences, and transposition; maintenance of genome integrity during meiosis.
Linda MacArthur, Ph.D. Email: linda.macarthur@nih.govBiographical Sketch
Enzymes and mechanisms of DNA replication and repair, including by both replicative and non-replicative mechanisms; replication stress and fork repair; regulation of DNA repair, including factors that favor the action of one repair pathway over another; replication through chromatin; transcription-induced DNA damage.
Michael Reddy, Ph.D. Email: reddymk@nigms.nih.govBiographical Sketch
A gene regulatory network (GRN) is a set of genes, gene modifications or parts of genes, that interact in a coordinated manner with each other to control a specific cell function. Gene regulatory networks are involved in development, differentiation and responding to environmental cues. GRNs can act at the level of transcription, translation or a combination.
This portfolio includes research on the study of the networks and the interacting genes and regulators.
Investigations of genetic mechanisms that determine human phenotypes. Genetic studies employing research organisms relevant to a human phenotype, genetic and environmental factors that influence common disorders and phenotypes with complex inheritance, and computational and statistical approaches to the analysis of genetic variation influencing human phenotypes.
Structure, function, and metabolism of cytoplasmic mRNA. Control of gene expression at the level of translation, including RNA editing, mRNA stability, and nonsense-mediated decay.
Dimitrios Vatakis, Ph.D. Email: dimitrios.vatakis@nih.govBiographical Sketch
The mechanics of protein synthesis. Areas of interest include synthesis, structure and function of components of the translation system, namely tRNA, rRNA, ribosomal proteins, and initiation and termination factors.
Fenglian Xu, Ph.D. Email: fenglian.xu@nih.govBiographical Sketch
Mechanisms of production and regulation of regulatory RNAs including siRNAs, microRNAs, piRNAs, CRISPR RNAs and related non-coding RNAs. Function of regulatory RNA including effects on mRNA stability or translation.
All manner of processing of RNA species including the full-range of RNA splicing mechanisms. Also, the formation, structure, function, and regulation of spliceosomal precursors and components, and intranuclear transport of RNA.
Kevin Czaplinski, Ph.D. Email: kevin.czaplinski@nih.govBiographical Sketch
Investigations into the macromolecular interactions that mediate or regulate transcription. Included are strategies and techniques for identifying molecules and sequences involved in regulating transcription at a global level.
Donna Krasnewich, M.D., Ph.D. Email: dkras@nigms.nih.govBiographical Sketch
Mechanisms and systemic effects of anesthesia including general, regional, and local anesthetics. Includes sedation in the intensive care setting, pain control and studies of consciousness related to anesthesia and the peri-operative period.
Zuzana Justinova, M.D., Ph.D. Email: zuzana.justinova@nih.govBiographical Sketch
Drug metabolizing enzymes (including but not limited to CYP-mediated bioactivation) and drug transporters (excluding nutrients and neurotransmitter transporters). Includes generalizable principles pharmacokinetics, pharmacodynamics, and pharmacogenomics, as well as drug-drug, drug-nutrient, drug-microbiome interactions and consequent adverse effects.
Sailaja Koduri, Ph.D. Email: sailaja.koduri@nih.govBiographical Sketch
Total body responses to injury (traumatic, thermal, or surgical) and shock, in post-injury period to acute phase through long-term effects, until recover or mortality. Includes inflammatory and immune responses, hypermetabolism, and prediction of body-wide recovery with emphasis on understanding pathophysiological systemic responses. Studies focused on very specific organs or conditions (such as traumatic brain injury) are not within the purview of NIGMS and should be discussed with the institutes covering those mission areas.
Chris Chao, Ph.D. Email: chris.chao@nih.govBiographical Sketch
Systemic biological responses to challenges spanning multiple organ systems, including the physiological consequences of circadian rhythms, and stress as related to human health.
Delivery systems and novel strategies designed to improve biodistribution and pharmacokinetics of small and large molecules and biologics. Studies aimed at efficacy for specific diseases (such as with pre-clinical models), or those focused on obtaining regulatory approval, will not be accepted and should be discussed with the institutes focused on those missions.
Small business (SBIR) and tech transfer (STTR) grants in pharmacological and clinical areas.
Severe sepsis and septic shock, with emphasis on the host response rather than a presumptive causative microorganism or injury.
Xiaoli Zhao, Ph.D. Email: xiaoli.zhao@nih.govBiographical Sketch
Cellular and molecular mechanisms of innate immune and inflammatory responses related to the host response to injury. Includes basic studies that underlie patient responses at the systemic level in critical illness.
For R35 (MIRA)-related questions, contact:
For R01-related questions, contact:
Shakira Nelson, Ph.D. Email: shakira.nelson@nih.govBiographical Sketch
Studies aimed at understanding phases and signaling pathways that regulate the wound healing process. Fundamental research into the cellular mechanisms associated with excessive or impaired wound healing.
Energy transducing enzymes of the mitochondrial inner and outer membranes, chloroplasts, and microorganisms; electron transport, photosynthesis, including biogenesis of cofactors and substrate transport.
Charles Ansong, Ph.D. Email: charles.ansong@nih.govBiographical Sketch
Temporal and spatial signaling within cells, including calcium fluxes, diffusion, and pumps; regulation of signaling molecules by compartmentalization within organelles, and cellular sinks and releasing proteins.
G protein-coupled receptors and cell surface receptors for drugs, endogenous ligands, and other stimuli; purpose is to understand basic biology and/or for validation as potential therapeutic targets.
Mechelle Lewis, Ph.D. Email: mechelle.lewis@nih.govBiographical Sketch
Individual enzyme mechanisms, regulation, modification, and inhibition to understand the catalytic specificity of synthesis, modification, or degradation of metabolites and macromolecules.
Oleg Barski, Ph.D. Email: oleg.barski@nih.govBiographical Sketch
Molecular pathways for signal transduction and regulation within cells, including second messengers such as kinases, phosphatases, adapter proteins, lipid messengers, phospholipases and others (excluding calcium). Includes intracellular nuclear and cytosolic receptors.
Pore-forming proteins specialized for ions (Na, K, Cl), ligand and voltage-gated, found at cell surface and organelle membranes. Includes ion channel blockers such as venoms and toxins.
PIs with last names starting A-K, contact:
Zhongzhen Nie, Ph.D. Email: mailto:niezhong@nigms.nih.govBiographical Sketch
PIs with last names starting with L-Z, contact:
Zuzana Justinova, M.D., Ph.D. Email: zuzana.justinova@nih.govBiographical Sketch
Scaffolding and functional components of cellular membranes and vesicles: structural lipids (e.g., cholesterol), integral proteins, and their modifications. Gap junctions and communications between cells.
Zhongzhen Nie, Ph.D. Email: niezhong@nigms.nih.govBiographical Sketch
Functions and mechanisms of metalloenzymes, including natural and synthetic macromolecules that form transition metal-utilizing proteins and transporters.
Miljan Simonovic, Ph.D. Email: miljan.simonovic@nih.govBiographical Sketch
Metabolic pathways and information flow; includes studies of transient intermediates and stable multi-enzyme complexes, and how catalytic processes and fluxes are affected by the intracellular milieu.
Pathways responsible for generation or decomposition of reactive species (O, N, S), and the modification of cellular constituents by oxidative stressors; chemistry and maintenance of cellular redox balance.
Charles Ansong, Ph.D. Email: charles.ansongBiographical Sketch
Regulation of trace metal ions (e.g., Fe, Co, Ni, Cu, Zn, As, Se, Mo, W), their transport, intracellular concentrations and speciation, and metal ion chaperones and ionopheres. Includes restriction of metal ion availability as a therapeutic intervention.
Research focused on understanding and manipulating the roles of metal ions in biological processes by investigating their complex interactions with biological systems. Approaches that leverage a multidisciplinary approach, combining cutting-edge techniques in synthetic chemistry, spectroscopy, and molecular biology to create and study novel metal complexes and their interactions with enzymes and other biological molecules essential to life.
Kadir Aslan, Ph.D. Email: kadir.aslan@nigms.nih.govBiographical Sketch
Technology development for basic biomedical research, including engineering tools and materials for applications at the molecular level. Using chemical methods to produce tools to study or manipulate biology. Development of chemical tools, such as probes, polymers, and nanostructured assemblies for potential use in biological systems and medical applications.
Chemical tools to study and manipulate protein signaling pathways and post-translational modifications.
Marie Harton, Ph.D.Email: marie.harton@nih.govBiographical Sketch
Development of catalytic reactions, including transition metal catalysis, organocatalysis, photochemical and electrochemical reactions.
Jiong Yang, Ph.D. Email: jiong.yang@nih.govBiographical Sketch
Development of reagents and new synthetic methods. Includes theoretical studies of reaction mechanisms and computational approaches.
Design, synthesis, and testing of novel small molecule probes that target specific biological entities and pathways intended for the study of biological function. Includes development and approaches with docking libraries and screens. Research aimed at an organ or organ system, or the pathophysiology or treatment of an identified disease, will in most cases be more appropriate for another institute.
Miles A. Fabian, Ph.D. Email: fabianm@nigms.nih.govBiographical Sketch
Design and synthesis of carbohydrate structures and their production through chemical synthesis or chemoenzymatic synthesis. This includes the development of sophisticated glycochemical techniques (design and assembly of sugars and their analogs) that expand current methodologies for the synthesis, analysis, and utilization of complex carbohydrates, driving forward both fundamental science and translational research opportunities.
Sarah Wengryniuk, Ph.D. Email: woldse@nih.govBiographical Sketch
Carbohydrate-containing macromolecules with an emphasis on carbohydrates and their binding partner(s). Includes sugar transporters and carrier lipids, glycan processing enzymes, protein: glycan mediated interactions, and peptidoglycans.
Michelle R. Bond, Ph.D. Email: bondmr@mail.nih.govBiographical Sketch
Identification and study of substances produced by living organisms that may form the foundation for therapeutic development. Analysis of organisms and their environments through the study of genetic information and biosynthetic pathways. Includes molecules produced and altered in microbial communities. Studies focused on human microbiome metabolites and their associated disease pathogenesis may be more appropriate for other NIH Institutes or Centers.
Advancements in peptide research from the synthesis of novel scaffolds for enhanced stability and function to the use of peptides as chemical biology tools for studying enzyme functions and cellular processes. This also includes innovative methods in peptide synthesis, improved strategies for overcoming cellular barriers, and new therapeutic strategies.
Small business (SBIR) and tech transfer (STTR) grants in biochemical and biologically-relevant chemical areas. Includes new technology development.
Engineering technologies to produce useful biological materials. Uses biological methods to produce tools to study or manipulate biology. Mixture of physical and genetic engineering to create new biological entities and systems, or redesign of naturally occurring systems.
The IDeA program builds research capacity in states that historically have had low levels of NIH funding by supporting basic, clinical, and translational research, faculty development, and infrastructure improvements.
Mercedes Rubio, Ph.D.Email: rubiome@nigms.nih.govBiographical Sketch
This initiative supports partnerships between American Indian/Alaska Native (AI/AN) tribes or tribally based organizations and research-intensive academic institutions that conduct biomedical research.
Crystal Richards, Ph.D. Email: crystal.richards@nih.govBiographical Sketch
This program seeks to strengthen research capacity and provide research support to the faculty at institutions that receive limited NIH research support and serve students from groups underrepresented in biomedical research.
This program is designed to improve national STEM literacy through innovative educational programs.
Tony Beck, Ph.D. Email: beckl@mail.nih.govBiographical Sketch
Yang Zhou, Ph.D.Email: yang.zhou@nih.govBiographical Sketch
This initiative provides institutional support to partnerships between community colleges and colleges or universities that offer the baccalaureate degree to develop and implement well-integrated training activities that will increase students preparation and skills as they advance academically in the pursuit and successful completion of the baccalaureate degree in biomedical sciences.
Laurie Stepanek, Ph.D. Email: laurie.stepanek@nih.govBiographical Sketch
U-RISE is an undergraduate student training program for institutions with research-active environments. Eligible institutions must have a 3-year average of NIH research project grant (RPG) funding less than $7.5 million in total costs. The goal of the U-RISE program is to promote broad participation in the biomedical research workforce by strengthening research training environments and expanding the pool of well-trained students who complete their baccalaureate degree, and transition into and complete biomedical, research-focused higher degree programs (such as Ph.D. or M.D./Ph.D.).
Marie Harton, Ph.D. Email: marie.harton@nih.govBiographical Sketch
Joyce Stamm, Ph.D. Email: joyce.stamm@nih.govBiographical Sketch
Jeremy McIntyre, Ph.D. Email: jeremy.mcintyre@nih.govBiographical Sketch
The TURTLE program is for federally recognized American Indian/Alaska Native (AI/AN) Tribal Entities to develop a pool of scientists to support the development of individuals who have the skills required to conduct AI/AN health research in a culturally appropriate, ethically responsible and rigorous manner, to complete their degrees in a biomedical field, and to transition into careers in the biomedical research workforce.
Kalynda Gonzales Stokes, Ph.D. Email: NIGMSTurtle@nigms.nih.govBiographical Sketch
MARC is an undergraduate student training program for institutions with research-intensive environments. Eligible institutions must have a 3-year average of NIH research project grant (RPG) funding greater than or equal to $7.5 million in total costs. The goal of the MARC research training program is to promote broad participation in the biomedical research workforce by strengthening research training environments and expanding the pool of well-trained students who complete their baccalaureate degree, and transition into and complete biomedical, research-focused higher degree programs (such as Ph.D. or M.D./Ph.D.)
Lameese Akacem, Ph.D. Email: lameese.akacem@nih.govBiographical Sketch
This initiative provides institutional support for the research training and education of recent baccalaureate graduates who plan to pursue Ph.D. degrees. This research apprenticeship serves as an educational transition for recent baccalaureate graduates who will acquire essential academic credentials and research skills to make them more competitive for Ph.D. programs at highly selective institutions.
This initiative provides support to partnerships between organizations to promote broad participation in the biomedical research workforce by strengthening research training environments to support cohorts of students in biomedical research Master's degree programs to transition into biomedical PhD programs at a partner organization.
G-RISE is a graduate student training program for institutions with research-active environments. Eligible institutions must have a 3-year average of NIH research project grant (RPG) funding less than $7.5 million in total costs. The goal of the G-RISE program is to strengthen research training environments and promote broader participation in the biomedical research workforce by expanding the pool of well-trained scientists earning a Ph.D.
IMSD is a graduate student training program for institutions with research-intensive environments. Eligible institutions must have a 3-year average of NIH research project grant (RPG) funding greater than or equal to $7.5 million in total costs. The goal of the IMSD program is to strengthen research training environments and promote broader participation in the biomedical research workforce by expanding the pool of well-trained scientists earning a Ph.D.
The purpose of the Advancing Research Careers (ARC) program is to support cohorts of promising, late-stage graduate students from diverse backgrounds pursuing research training in NIH mission areas. The program has two components: an individual predoctoral-to-postdoctoral transition award (F99/K00) and a research education cooperative agreement (UE5) awarded to organizations to provide F99/K00 fellows with additional mentoring, networking, and professional development activities to support their transition to and success in mentored postdoctoral research positions. The ARC program supports NIH's efforts to develop a biomedical research workforce that will benefit from the full range of perspectives, experiences, and backgrounds needed to advance discovery.
Lameese Akacem, Ph.D. Email: lameese.akacem@nih.govBiographical Sketch
Predoctoral M.D./Ph.D. or Other Dual-Doctoral Degree Fellowships (F30) Awards are for individuals who seek advanced predoctoral research training in basic biomedical sciences relevant to the NIGMS mission. These fellowships promote fundamental, interdisciplinary and innovative research training and career development leading to independent scientists who are well prepared to address the nation's biomedical research needs. These awards are designed to enhance the integrated research and clinical training of promising predoctoral students, who are matriculated in a combined M.D.-Ph.D. or other dual-doctoral degree training program (e.g. D.O.-Ph.D., D.D.S.-Ph.D., Au.D.-Ph.D., D.V.M.-Ph.D), and who intend careers as physician-scientists or other clinician-scientists. The fellowship experience is expected to clearly enhance the individuals' potential to develop into productive, independent physician-scientists or other clinician-scientists.
All requests for general information about training grants should be directed to:
Amanda Alise Price, Ph.D. Email: amanda.alise.price@nih.gov
Behavioral-Biomedical Sciences Interface Programs in this area should provide graduate research training for students at the behavioral sciences-biomedical sciences interface. The goal of the program is to develop basic behavioral scientists with rigorous broad-based training in the biomedical sciences. Programs must provide an interdisciplinary research training experience for predoctoral trainees that integrates both behavioral and biomedical perspectives, approaches and methodologies. Training programs must include coursework, laboratory rotations, and programmatic activities that reinforce training at this interface. The training programs should also include quantitative problem-solving, statistical analysis, and/or other didactic or hands-on activities that will enhance the trainees' quantitative and computational skills and integrate training in data-science approaches throughout their curricula. Significant participation by faculty and leadership from both behavioral and biomedical science departments is required, as is co-mentoring of trainees by faculty from both components.
Biostatistics Programs in this area should provide training that integrates biostatistical theory and evolving methodologies with basic biomedical research including, but not limited to, bioinformatics, genetics, molecular biology, cellular processes and physiology, as well as epidemiological, clinical and behavioral studies. The goal is to ensure that a workforce of biostatisticians with a deep understanding of statistical theory and new methodologies is available to assume leadership roles related to the nation's biomedical research needs.
Biotechnology Programs in this area should train students in the techniques and principles needed to pursue research in biotechnology. The education should be multidisciplinary, but provide a firm grounding in one or more of the fields that contribute to biotechnology, such as engineering, biophysics, biochemistry, genetics and cell biology. Faculty and students participating in this program should be drawn from several departments, but should have a focus on engineering. The faculty should be conducting research relevant to the understanding and utilization of biological processes for biotechnological applications. In addition to scientific, theoretical and practical knowledge, programs are expected to provide training in communications skills, career development and an understanding of regulatory, commercialization and IP issues in bringing a biotechnology product to the market. The program requires a mandatory two-to-three month internship in pharmaceutical or biotechnological industry. A close interaction between academic and industrial partners is strongly recommended.
Cellular, Biochemical, and Molecular Sciences: Programs in this area should be cross-disciplinary and involve in-depth study of biological problems at the level of the cellular and molecular sciences. The research training offered should encompass related disciplines, such as biochemistry, bioinformatics, biophysics, chemistry, cell biology, developmental biology, genetics, immunology, microbiology, molecular biology, neurobiology and pathology. These research opportunities should be available in the represented disciplines with faculty mentors from interacting departments and/or interdisciplinary Ph.D. programs.
Baishali Maskeri, Ph.D. Email: maskerib@mail.nih.govBiographical Sketch
Chemistry-Biology Interface (CBI): Programs in this area should provide significant biological training to students receiving in-depth training in synthetic/mechanistic chemistry and provide significant training in synthetic/mechanistic chemistry to students being trained in depth in the biological sciences. It is expected that CBI programs will consist of faculty drawn from departments of chemistry, medicinal chemistry and/or pharmaceutical chemistry and faculty from the biological disciplines, such as genetics, cellular, biochemical and molecular sciences. Students trained at the chemistry-biology interface should be well-grounded in a core discipline and sufficiently well-trained in complementary fields to allow them to work effectively in a multidisciplinary team.
Computational Biology, Bioinformatics, and Biomedical Data Science: Programs should train students in the fundamentals and applications of computational and information sciences to gain insights and develop new strategies to solve problems relevant to basic biomedical research. Of particular interest are multi-disciplinary programs providing the skills to address biomedical research questions by utilizing large data sets and multiscale approaches. Accordingly, multi-department applications which partner biological sciences with quantitative and computational sciences (e.g., data science, computer science, statistics, mathematics, informatics, engineering) are encouraged. Training should include the use of theory, simulations, data sciences, machine learning, artificial intelligence, and other bioinformatics and computational approaches to address the full spectrum of basic research areas in the biomedical sciences, including for example, the fundamentals of analysis and interpretation of molecular sequence and structure, molecular function, cellular function, physiology, genomics, and genetics. In accordance with the NIH Strategic Plan for Data Science [PDF], training should also include aspects of fair and ethical data use, data sharing, and data security and confidentiality. NIGMS encourages programs to make use of resources and expertise available in the private sector to develop student skills and career paths in areas including efficient computer code development and use of emerging technologies and platforms.
Han Ngyuen, Ph.D. Email: han.nguyen@nih.govBiographical Sketch
Genetics:Programs in this area should emphasize broad, multidisciplinary training in the principles and mechanisms of genetics and related sciences. Training in a variety of areas such as classical genetics, molecular genetics, population and behavioral genetics and developmental genetics should be offered. Programs may also include training and research opportunities in related disciplines such as biochemistry, cell biology and statistics. Programs are generally expected to include faculty members in disciplines other than genetics.
Dimitrios Vatakis, Ph.D. Email: dimitrios.vatakis@nih.govBiographical Sketch
Molecular Biophysics: Programs in this area should provide multidisciplinary training that focuses on the application of the concepts and methods of the physical sciences to explain biological function in terms of molecular structure, dynamics, and organization from single molecules to supramolecular structures. These programs should bring together faculty and students from departments such as chemistry, physics, and engineering who have an interest in quantitative, biologically-related research with faculty and students in biological science departments whose orientation is mechanistic and structural biology.
Molecular Medicine: Programs in this area should provide training that combines rigorous didactic training in the basic biomedical sciences with exposure to concepts and knowledge underlying the molecular basis of disease. The goal is to train a cadre of scientists prepared to work at the interface of basic biomedical science and clinical research, an area sometimes referred to as translational research. Trainees should have dual mentors in basic and clinical science, and exposure to the concepts of medicine. Training faculty should be broadly drawn from multiple departments and disciplines and thesis research topics should reflect a broad range of interdisciplinary opportunities in the basic biomedical sciences. This training opportunity should be primarily designed for Ph.D. candidates.
Zhongzhen Nie, M.D., Ph.D. Email: niezhong@nigms.nih.govBiographical Sketch
Pharmacological Sciences: Programs in this area should incorporate a quantitative and systems approach to pharmacology. Individuals should receive training that will enable them to conduct research in the development of therapeutic agents. It should also provide training in regulatory sciences that includes the study of pharmacometrics and the principles of absorption, distribution, metabolism, excretion and toxicology (ADME-Tox). Thesis research opportunities should be available with faculty members in a variety of disciplines, such as biochemistry, physiology, molecular biology, cell biology, chemistry, medicinal chemistry and toxicology, as well as pharmacology. Students trained in this program should be able to contribute to the design and evaluation of therapeutic agents and strategies based upon the competence they have acquired through specialized training in the pharmacological sciences, both through their individualized research area and their understanding and being conversant with the overall drug discovery and development process.
Systems and Integrative Biology: Programs in this area should provide training directed toward building the broad research competence required to investigate the integrative, regulatory and developmental processes of higher organisms and the functional components of these processes. The training program should bring together varied resources, approaches and thesis research opportunities with faculty mentors of such disciplines/departments as physiology, biomedical engineering, the behavioral sciences, biochemistry, systems biology and cell and developmental biology. Graduates of the program should be well versed in quantitative approaches to biology.
Chris Chao, Ph.D. Email: chris.chao@nih.govBiographical Sketch
Trans-Departmental Basic Biomedical Sciences: Organizations without an NIGMS-funded predoctoral T32 program (other than the LEAD-MSTP or Bridges to the Doctorate) can support trainees engaged in biomedical research across a broad range of biomedically relevant departments at the organization through the Trans-departmental Basic Biomedical Sciences program.
The Trans-departmental program area is designed to broaden the scope and geographic distribution of NIGMS training funds and is open only to organizations that currently do not have an NIGMS-funded institutional predoctoral T32 training program unless it is a LEAD-MSTP or Bridges to the Doctorate program. Applicants may not have an active NIGMS T32 in any of the 12 Basic Biomedical Sciences areas, MSTP, G-RISE or IMSD, at the time of the Trans-Departmental T32 award. Applications from organizations in IDeA states are encouraged.
Programs funded in this area should support trainees from a broad range of biomedically relevant departments or fields of research across the organization. A focus on one or a limited number of available disciplines is a low program priority, even if potential trainees will conduct interdisciplinary research. All applicants are strongly encouraged to contact the Program Officer well in advance of application submission.
Medical Scientist Training Program (MSTP, leading to combined clinical and research doctorate degrees): The MSTP supports the integrated dual degree training that leads to the award of both clinical (that is, M.D., D.O., D.V.M., D.D.S., Pharm.D., etc.) and research doctorate degrees (Ph.D.) that implements effective and evidence-informed approaches. With the dual qualification of rigorous scientific research and clinical practice, graduates will be equipped with the skills to develop research programs that accelerate the translation of research advances to the understanding, detection, treatment, and prevention of human disease, and to lead the advancement of biomedical research. MSTP assures selected trainees a choice of a wide range of pertinent graduate programs in the biological, chemical, and physical sciences that, when combined with training in medicine, lead to a dual degree. Programs are encouraged to provide a breadth of doctoral research training opportunities consistent with individual institutional strengths. In addition to the above disciplines, support of trainees in other disciplines such as computer sciences, social and behavioral sciences, economics, epidemiology, public health, bioengineering, biostatistics, and bioethics is encouraged. Proposed MSTP programs should be flexible and adaptable in providing each trainee with the appropriate background in the sciences relevant to medicine yet be rigorous enough to enable graduates to function independently in both basic research and clinical investigation.
Leading Equity and Diversity in the Medical Scientist Training Program (LEAD MSTP, leading to the combined clinical and Ph.D. degrees): The Leading Equity and Diversity in the Medical Scientist Training Program is part of NIH's efforts to broaden participation of institution types with NIH funded dual-degree training programs (i.e., a Ph.D. combined with a clinical degree, such as M.D., D.O., D.V.M., D.D.S., Pharm.D., etc.) and have historically not been well represented among NIGMS-funded MSTPs.
This program is limited to dual-degree training programs at (1) Historically Black Colleges and Universities (HBCUs), (2) Tribal Colleges and Universities (TCUs), and (3) institutions within Institutional Development Award (IDeA)-eligible states. When appropriate, NIGMS encourages applications using a partnership model to further and advance the goals of the program.
These awards support the development of outstanding academic physician-scientists in the areas of anesthesiology, clinical pharmacology, innate immunity, inflammation, sepsis, and trauma and burn injury. They provide support for a period of 3 to 5 years of supervised research and study to clinically trained professionals who have the commitment and potential to develop into productive, independent investigators.
AnesthesiologyZuzana Justinova, M.D., Ph.D. Email: zuzana.justinova@nih.govBiographical Sketch
Clinical PharmacologySailaja Koduri, Ph.D. Email: sailaja.koduri@nih.govBiographical Sketch
Innate Immunity and InflammationXiaoli Zhao, Ph.D. Email: xiaoli.zhao@nih.govBiographical Sketch
SepsisXiaoli Zhao, Ph.D. Email: xiaoli.zhao@nih.govBiographical Sketch
Injury and Critical Illness ResearchChris Chao, Ph.D. Email: chris.chao@nih.govBiographical Sketch
The F32 fellowship is for individuals who seek postdoctoral research training in areas related to the scientific programs of the institute.
Requests for general information about individual postdoctoral fellowships at NIGMS should direct inquiries to:
Anissa Brown, Ph.D. Email: anissa.brown@nih.govBiographical sketch
For postdoctoral fellowship information specific to the NIGMS scientific divisions listed below, contact the indicated program officer:
Biophysics, Biomedical Technology, and Computational BiosciencesVeronica Taylor, Ph.D. Email: veronica.taylor@nih.govBiographical Sketch
Genetics and Molecular, Cellular, and Developmental Biology Applicant's grant number last digit 0-2: contact Dr. XuApplicant's grant number last digit 3-9: contact Dr. Rigas
Jianhua Xu, Ph.D. Email: jianhua.xu@nih.govBiographical Sketch
Pharmacology, Physiology, Biological Chemistry Applicant Last Name A-G: contact Dr. Lewis Applicant Last Name H-P: contact Dr. Aslan Applicant Last Name Q-Z: contact Dr. Simonovic
Kadir Aslan, Ph.D. Email: kadir.aslan@nih.govBiographical Sketch
Requests for general information about institutional postdoctoral training awards should be directed to:
NIGMS staff members who manage specific training programs are listed below.
Anesthesiology Programs should provide multidisciplinary research training to help develop individuals with the skills and expertise to explore problems relevant to anesthesiology, including the fundamental mechanisms of anesthetic action. The goal is to provide rigorous postdoctoral research training with an emphasis on hypothesis-driven laboratory or clinical research. Trainees, most of whom would hold the M.D. degree, will be expected to spend at least 2 years in the training program and should have the opportunity to acquire fundamental knowledge and research techniques in such disciplines as biochemistry, biophysics, cell biology, molecular biology, neurobiology, pharmacology or physiology. For trainees with the Ph.D. degree, the research and training should be specifically designed to promote a research career addressing problems in anesthesiology.
Zuzana Justinova, M.D., Ph.D. Email: zuzana.justinova@nih.govBiographical Sketch
Clinical Pharmacology Individuals in these training programs should receive experience in the methodology and in the conduct of clinical and basic research to qualify them to investigate the effects and mechanisms of drug actions in humans. Trainees, who would usually have the M.D. degree, should have the opportunity to acquire fundamental scientific knowledge and learn research techniques in areas such as basic pharmacology, biochemistry, physiology, biostatistics and other biomedical subdisciplines.
Sailaja Koduri, Ph.D. Email: sailaja.koduri@nih.govBiographical Sketch
Medical Genetics Training programs should provide advances and specialized research training in the principles of genetics with the goal of understanding human genetic disorders. Trainees should be drawn from diverse backgrounds and should be offered opportunities for conducting research with faculty who represent a variety of approaches to genetics ranging from molecular genetics to human population genetics. For holders of the M.D. or other professional degrees, the program should provide training and research opportunities in areas of basic genetics. This training should build on, and complement, the trainee's clinical background. For holders of the Ph.D. degree, the research and training should emphasize the application of the trainee's basic genetics background to problems in human and medical genetics.
Injury and Critical Illness Support for multidisciplinary research training is offered to individuals holding the M.D. or Ph.D. degree who seek to improve the understanding of the body's systemic responses to major injury and to foster the more rapid application of this knowledge to the treatment of trauma and burn-injured victims and/or critically ill patients. The supervisory staff of the training program should include trauma surgeons, burn specialists and critical care specialists as well as basic scientists. Trainees, most of whom would hold the M.D. degree, will be expected to spend at least 2 years in the training program and to apply such basic disciplines as physiology, biochemistry, immunology, microbiology, cell biology, molecular biology, biomedical engineering or behavioral sciences to the study of injury and/or critical illness.
These awards provide institutional support to partnerships between a research-intensive university and one or more partner institutions that have a historical mission and a demonstrated commitment to providing training, encouragement, and assistance to students in the biomedical research workforce. The grant supports postdoctoral trainees who are engaged in cutting-edge research at the research-intensive university and who also participate in teaching at a partner institution, thus helping improve the research environment and also providing diversity in courses available to students at these institutions.
The IPERT supports creative and innovative research educational activities designed to complement and/or enhance the training of a workforce to meet the nation's biomedical research needs. Each IPERT program must address the NIGMS goals of creating a highly skilled and diverse biomedical workforce. The programs can be designed to support stages of research career development from the undergraduate to the faculty level and must be ancillary or complementary to those research training and research education programs in which they currently participate, regardless of the source of support. While the balance of activities in a single application may vary, an IPERT application must effectively integrate two core elements: courses/workshops for skills development and mentoring activities.
Sydella Blatch Alexander, Ph.D. Email: sydella.blatch@nih.govBiographical Sketch
This program is intended to enable and encourage the scientific community to create and disseminate training modules that will effectively contribute to the advancement of the biomedical research workforce. NIGMS intends to fund training modules in distinct subject areas that are currently relevant to biomedical scientists. The subject topics are described through “Notices of Special Interest (NOSI)” published annually the “Related Notices” section of the notice of funding opportunity.
Joyce Stamm, Ph.D. Email: joyce.stamm@nih.govBiographical Sketch
The program aims to promote broad participation in biomedical research by supporting Resource-Limited Institutions (RLIs) to conduct research, enhance their research environments, and increase sponsored programs administration capacity.
Marie Harton, Ph.D. Email: marie.harton@nih.govBiographical Sketch
The senior fellowships (F33) are for established independent investigators.
Requests for general information about the senior fellowships supported by NIGMS should be directed to:
Anissa Brown, Ph.D. Email: anissa.brown@nih.govBiographical Sketch
This program provides support for both mentored and independent research from the same award. The award provides up to 5 years of support consisting of two phases: the initial phase (K99) provides 1-2 years of mentored support to highly promising, postdoctoral research scientists, followed by up to 3 years of independent support (R00) contingent on the scientist securing an independent research position. Applications are accepted for research and training aligned with the NIGMS research priorities. NIGMS encourages postdoctoral trainees to apply by their third year of postdoctoral training.
Paula Flicker, Ph.D., Division of Biophysics, Biomedical Technology, and Computational Biosciences Email: flickerp@nigms.nih.govBiographical Sketch
Chi-Wing Chow, Ph.D., Division of Genetics and Molecular, Cellular, and Developmental Biology Email: chi-wing.chow@nih.govBiographical Sketch
Shawn Gaillard, Ph.D., Division of Genetics and Molecular, Cellular, and Developmental Biology Email: shawn.gaillard@nih.govBiographical Sketch
Oleg Barski, Ph.D., Division of Pharmacology, Physiology, and Biological Chemistry Email: oleg.barski@nih.govBiographical Sketch
Anissa Brown, Ph.D., Division of Training and Workforce Development and General Questions Division of Training and Workforce Development Email: anissa.brown@nih.govBiographical Sketch
The purpose of the Maximizing Opportunities for Scientific and Academic Independent Careers (MOSAIC) program is to support a cohort of early career, independent investigators conducting research in NIH mission areas. The program has two components: an individual career transition award for postdoctoral scholars (K99/R00) and a research education cooperative agreement (UE5) awarded to organizations to provide these scholars with additional mentoring, networking and professional development activities to support their transition to and success in independent, tenure-track or equivalent research-intensive faculty careers. The MOSAIC program supports NIH’s efforts to develop a biomedical research workforce that will benefit from the full range of perspectives, experiences and backgrounds needed to advance discovery.
Kenneth Gibbs, Ph.D. Email: kenneth.gibbs@nih.govBiographical Sketch
Kalynda Gonzales Stokes, Ph.D. Email: kalynda.stokes@nih.govBiographical Sketch
The purpose of this program is to support research that will enhance the evidence base for effective, high-impact, scalable interventions, and to improve our understanding of the factors contributing to success, including the social and behavioral factors, involved in the advancement of individuals pursuing independent academic biomedical research careers. Investigators may also apply for the Maximizing Investigators' Research Award (MIRA) (R35) in this research area.
This program is jointly supported by NIGMS and the National Science Foundation (NSF) through the Science of Science: Discovery, Communication, and Impact in the Directorate for Social, Behavioral and Economic Sciences (SBE).
The SoS:BIO program supports a portfolio of research to provide scientific analysis of important aspects of the biomedical research enterprise and efforts to foster a diverse, innovative, productive and efficient scientific workforce from which future research discoveries and scientific leaders will emerge.
Joyce Stamm, Ph.D. Email: joyce.stamm@nih.govBiographical Sketch
These awards support the career development of quantitatively trained investigators from the postdoctoral level to the senior faculty level who make a commitment to basic or clinical biomedicine, bioengineering or bioimaging research that is relevant to the NIH mission.
Anissa Brown, Ph.D. Email: anissa.brown@nih.govBiographical Sketch
This NIH-wide program provides supplemental funds to principal investigators holding NIGMS research grants, to improve the diversity of the research workforce by supporting and recruiting students and postdoctoral fellows that have inhibited their ability to pursue a career in health-related research.
This NIH-wide program provides supplemental funds for career development (K) or first-time research project grant (RPG) awardees whose progress is likely to be hindered by a critical life event such as childbirth, adoption, or primary caregiving responsibility for an ailing immediate family member.
Shakira Nelson, Ph.D. Email: shakira.nelson@nih.govBiographical Sketch
This NIH-wide program provides supplemental funds provide to provide full or part-time mentored research training experiences for individuals with high potential to re-enter, re-integrate into, or re-train in an active research career after an interruption for family responsibilities or other qualifying circumstances. NIGMS will only accept applications to either Research Supplements to Promote Re-Entry or Re-integration into in Health-Related Research Careers. NIGMS will not accept applications to Research Supplements to Promote Re-training in Health-Related Research Careers.
The ReWARD program supports scientists who are making a significant contribution to Diversity, Equity, Inclusion, and Accessibility (DEIA) — providing funding for both the scientific research and the DEIA activities of investigators. The NIGMS ReWARD program funds scientific research in areas related to the programmatic interests of NIGMS and ongoing DEIA activities focused on broadening participation in the biomedical research enterprise within the United States and territories.
Laurie Stepanek, Ph.D. Email: laurie.stepanek@nih.govBiographical Sketch
Jeremy McIntyre, Ph.D. Email: jeremy.mcintyre@nih.govBiographical Sketch